
Pergamon 

www.elsevier.wm!locate/jappmathmech 

1. A& Mcrrhs Me&, Vol. 64, No. 5, pp. 701-70&2000 
0 2001 Else&r Science Ltd 

PIk S0021-8928(00)00098-8 
All rights reserved. Printed in Great Britain 

0021-892WO/S-see front matter 

TWO MODES OF THE ANGULAR MOTION OF 
ARTIFICIAL EARTH SATELLITES? 

M. Yu. OVCHINNIKOV 

Moscow 

e-mail: ovchinn@keldysh.ru 

(Received 20 March 2ooo) 

A brief survey of the dynamics of artificial satellites with passive gravity-gradient and magnetic attitude control systems is presented. 
As examples, the parameters of such systems are computed for two nanosatellites in which interaction with the geomagnetic 
field is employed, implying stringent restrictions on mass, volume and energetics. The basic functions relating the characteristics 
of the motion to the parameters of such satellites are presented. Q 2001 Elsevier Science Ltd. All rights reserved. 

The modes of angular motion of satellites in external terrestrial force fields, observed in the 1950s and 
196Os, have attracted interest as regards the intensive use of small, inexpensive satellites. These early 
results have provided a basis for the development of passive and semi-passive attitude control systems, 
naturally, with resource to modern engineering achievements. This paper presents a brief survey of some 
research results that may be seen as a continuation of those early analyses of satellite dynamics in external 
terrestrial force fields and the application of those results to small satellites. 

1. TWO METHODS OF ATTITUDE CONTROL 

We will direct our attention to the most widespread and most readily implemented angular motions of 
small satellites. The most popular method of attitude control is that in which a given side of the satellite 
permanently faces the Earth. In this situation, the principal axes of inertia of the satellite either coincide 
with the axes of the orbital reference frame (triaxial gravity-gradient attitude control) or one of the 
axes coincides with the local vertical and the satellite moves fairly slowly about that axis (uniaxial gravity- 
gradient attitude control). For the most part, this method is used for remote sensing Earth satellites 
and communications satellites. Another mode of angular motion, used primarily on scientifically oriented 
satellites, is the spin of the satellite in space, one of its axes being aligned with the magnetic intensity 
vector H of the geomagnetic field (uniaxial magnetic attitude control). 

Both methods - and also, incidentally, other modes of passive motion of a satellite - require, besides 
a restoring torque, which guarantees the existence and stability of an equilibrium position of the satellite 
relative to the selected frame of reference, a dumping torque, which guarantees asymptotic stability of 
the selected mode of motion. The latter is necessary because there is almost no natural energy of 
dissipation of perturbed motion of the satellite relative to its centre of mass. The realization of such a 
torque necessitates providing the attitude control system with special damping elements. 

2. GRAVITY-GRADIENT ATTITUDE CONTROL SYSTEMS 

The investigation of the stability of the relative equilibrium of the Moon goes back to Lagrange. Only 
after two centuries did the applied aspects of this fundamental phenomenon find engineering applica- 
tions. The idea of using the gravitational field to ensure a fixed attitude of the satellite relative to the 
Earth was proposed in 1954 by Okhotsimskii [l, 21. A few years later, in 1959, Beletskii established 
conditions for the stability of an equilibrium position of a triaxial body in a circular orbit in a central 
gravitational field [3]. Later, he himself derived [3,4] an equation for the oscillations of the satellite in 
the plane of an elliptic orbit 

(I+ecosv)a”-2en’sinu +psinacosa=2esinu (2-l) 
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where p = 3(A - C)/B; A, B and C are the principal central moments of inertia of the satellite, which 
is spinning about its axis with moment of inertia B, the axis about which the moment of inertia is C 
makes an angle 01 with the local vertical, e is the eccentricity of the orbit, 2) is the true anomaly, primes 
denote differentiation with respect to u, and l.~ and e satisfy the inequalities 1 p 1 d 4,0 Q e < 1. This 
equation has been investigated by asymptotic techniques [3,5], and a more thorough investigation of 
its solutions has been achieved by numerical techniques [6]. The equation has become a classical one 
in spaceflight dynamics. 

The next step bringing researchers closer to real attitude control systems was the choice of a damping 
device and of mathematical models to describe it, and an analysis of the corresponding equations of 
motion of the satellite taking the damping torque into account. It is the presence of a damping device 
that guarantees asymptotic stability of the computed motion. Of the known damping devices, hysteresis 
rods of magnetically soft materials were selected. In the context of the simplest hysteresis model, namely, 
the parallelogram model, with the dipole model used to approximate the geomagnetic field, satellite 
motion in the plane of a circular polar orbit was analysed [7, g] using asymptotic methods. The conclusion 
was that the damping effect is proportional to the volume of the rods, and their presence generates a 
perturbation of the forced motions of the satellite. 

In developing a passive gravity-gradient attitude control system with hysteresis rods for a real satellite, 
we had to refine the hysteresis model and investigate satellite dynamics for orbits of arbitrary inclination 
and eccentricity, and also with the expected initial conditions of angular motion. The need for a 
compromise between the reliability of the model and clarity of the results forced us first to use a 
combination of simple models and asymptotic techniques in order to determine the system parameters 
using the closed formulae thus obtained, and then to test system’s behaviour with these parameters by 
numerical simulation using the refined hysteresis model. 

The notation used is as follows. The orbital frame of reference OX&&X3 relative to which the 
satellite’s attitude is to be controlled is defined in the traditional way. The origin is the satellite’s centre 
of mass, the axis OX, is aligned with the instantaneous radius vector of the satellite’s centre of mass 
relative to the Earth’s centre, the axis 0x2 is aligned with the normal to the orbital plane and the axis 
OX1 completes the frame of reference to a right-handed coordinate system. The axes of the frame of 
reference attached to the satellite, Oxrxzxs, are aligned with its principal central axes of inertia and, in 
the case of ideal attitude, coincide with the similarly named axes of the orbital frame of reference. By 
a pitching (rolling yawing) rotation of the satellite we mean a rotation through an angle cx about the 
normal to the orbital plane (through an angle y about the velocity vector of the centre of mass and 
through an angle p about the local vertical). If the satellite is engaged in some composite movement 
- successive rotations about two or three axes - these definitions retain their physical meanings only 
for small angles of rotation. 

We will use the parallelogram model to obtain simple relations between the parameters of the attitude 
control system and the dynamic characteristics of the satellite, in accordance with which the magnetic 
induction B, is expressed as a function of the projection H, of the external magnetic field onto the rod 
axis and its magnetic permeability CL by the formula 

B, =u 
dH 

H,- H,signL 
dt 

(2.2) 

This model probably reflects a fundamental property of hysteresis: weak dependence of the induction 
of the rod on the magnitude of the magnetic reversal rate, but a substantial dependence on the sign of 
the rate. In addition, the model is usable in both analytical and numerical work. It enables one to draw 
qualitative rather than quantitative conclusions. For quantitative data a numerically more accurate model 
will be used [9]. The first problem to be solved is the minimum necessary number of rods. Let us consider 
the satellite’s motion in plane of polar circular orbit. 

Suppose two hysteresis rods of identical characteristics are mounted on the satellite, with unit vectors 
gl and g2 and with coercive force H, equal to zero. Considering this case within the framework of the 
parallelogram model, one finds that the hysteresis loop degenerates into a straight line passing through 
the origin, and if the total induced magnetic moment of the rods coincides with H at each instant of 
time, the geomagnetic field will not affect the satellite’s motion. For identical rods with a linear 
magnetization characteristic, this is equivalent to the condition that the vector sum of the components 
of H along the rods must satisfy the relation 

(Hg, )gl + (Bg2)g2 = H (2.3) 
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Evaluating the scalar product of both sides of Eq. (2.3) with gi, we obtain (Hgz)(glg2) = 0. Hence it 
follows that necessarily (gigz) = 0, meaning that a decrease in the contribution of the magnetization 
of the hysteresis rods to the amplitude of steady motion is achieved by their mutual orthogonal position. 

We will now assume that two mutually orthogonal rods are mounted on the satellite, and that the 
non-linearity in magnetization is due solely to the presence of hysteresis. Let et be the projection of 
one of the rods onto the axis of the mean moment of inertia, in the nominal motion of the satellite 
directed along the tangent to the orbit. The equation of small oscillations of the satellite in the orbital 
plane, averaged over the natural oscillations and the argument of the latitude, has the following solution 
[lOI 

A,(u)=A,h,)exp 
9cH,v, 

-T(U-UO) 
I 

(2.4) 

where 

VP = &I - &I(4 -3&-g + (3ef + I)_%] (2.5) 

AP is the amplitude of small oscillations of the satellite, a is the dimensionless damping coefficient of 
the rod and is u the argument of the latitude. 

It is of interest to investigate the dependence of the coefficient 4 on the orientation of the rods 
relative to the satellite’s principal axes of inertia. The quantity up has a maximum at et = $2, equal to 
a/(5&) = 0.127. This means that damping is most effective with a “cross” of two mutually orthogonal 
identical rods, positioned at an angle of 45” to the principal axes of inertia of the satellite in the orbital 
plane. 

When the rods are positioned parallel to these axes, 4 = 0, and in the first approximation there is 
no damping. Consideration of terms of higher order in the small angle OL has shown [lo] that in this 
case the equation for the amplitude of small oscillations has the form 

A;=- ~W(P* A 
81cH 

16~ 
--A; 

’ 64~ (2.6) 

where ‘p is the angle of rotation of the rods about the satellite’s principal axes of inertia. Under these 
conditions the angles cp and OL are of the same order of magnitude. The solution of Eq. (2.6) as cp + 0 
determines the amplitude Ap as a power of the argument of the latitude 

1 
-K 

A, = A#+,) I + uo) (2.7) 

Thus, positioning the rods parallel to the principal axes of inertia leads to a change in the form of the 
time-dependence of the amplitude. Of course, any interpretation of the above results must allow for 
the limited nature of the hysteresis model described by function (2.2). However, numerical investiga- 
tion of satellite dynamics using both model (2.2) and the fairly adequate hysteresis model of [9] have 
shown good agreement with the above results. 

In the case of three-dimensional motion, three mutually orthogonal rods should be mounted on the 
satellite. The conclusions as to the position of two rods in the plane of the axes of the mean and minor 
moments of inertia remain valid. The third rod, aligned with the axis of the major moment of inertia, 
ensures effective damping of small oscillations-rolling and yawing oscillations are damped in a short 
time [ll] within the framework of model (2.2). 

Indeed, instead of the small amplitudes A2 and A3 of yawing and rolling oscillations about the trivial 
equilibrium position, we introduce variables r and x by formulae A2 = r sin x, A3 = r cos x. In these 
new variables, the equations of motion averaged over the argument of the latitude and the two phases 
corresponding to rolling and yawing oscillations, with a rod mounted perpendicular to the optimal 
“X-shape” of the two other rods, become 

r’ = -( R2 cos* x + R3 sin* x), x’ = i R, sin 2~ 
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where R2 and R3 are functions of the inertia parameters of the satellite, which are proportional to 
the dimensionless damping coefficient E, the coercive force H, of the rod material and the sine of the 
angle of inclination of the orbit. The condition for asymptotic stability of the position r = 0 is R2 > 0, 
R3 > 0. The response time of the system is determined by the quantity min(R2, Rs). The rate of damping 
of oscillations in the neighbourhood of the position r = 0 is proportional to the product &&sin i, implying 
the greater efficacy of the configuration just described in near-polar orbits. 

When the results of the theoretical analysis were used to develop an actual gravity-gradient attitude 
control system for the REFLECTOR nanosatellite of mass 6 kg, it was necessary to tackle additional 
problems relating to the simulation of satellite dynamics with the refined hysteresis model 191, taking 
into account mutual demagnetization of the rods, resonance relations between the natural frequencies 
and the frequencies of variations in the external torques, the effect of magnetizable elements of the 
satellites on its dynamics and the state of the rods.? 

The criterion chosen to govern the final selection of moments of inertia in the REFLECTOR satellite 
was the amplitude of yawing oscillations. A forced solution, under the action of a perturbing torque 
due to residual magnetization in the rods, was obtained from the equations of the oscillations, linearized 
in the neighbourhood of the trivial position of the satellite in the orbital frame of reference. The hysteresis 
model selected was the Rayleigh model, which allows for non-linear magnetization of the rod, since in 
the parallelogram model it has been shown that when three identical mutually orthogonal rods are 
installed, the effect of linear magnetization is eliminated. As the derivation of the solution is quite 
cumbersome, for simplicity we will present only the expression for the yaw angle, which is the most 
crucial one for the functioning of the system 

2(B-C)cosi+A(cosi-3sini)cosu 

3(B-C)(A-B+C) (2.8) 

where h is the magnetic constant, V, is the volume of the rods, Ho is the modulus of H at the equator 
and oR is the Rayleigh constant. Since the values of the equatorial moments of inertia are close together 
and their difference is close to the axial moment of inertia of the satellite, the element in this solution 
which exerts the greatest intluence on the amplitude of the oscillations of the angle p is the factor in 
parentheses (A - B + C). It follows from solution (2.8) that placing two additional loads along the 0x1 
axis does not cause an increase in the value of (B - A - C) , which might reduce the effective yawing 
torque. Indeed, as the mass of the additional loads on the Oxi axis is increased, the increment to the moment 
B is exactly balanced by the increase in the moments C and A. Additional loads must also be placed on 
the satellite axis &z, which, in the equilibrium position, is aligned with the normal to the orbital plane. 

The criteria governing the amplitude of yawing oscillations were minimization and sufficient distance 
from the resonances defined by 

Or=26.$, 01 =W* ‘W3, 01 =O2 +O3 (2.9) 

where o1 is the frequency of pitching oscillations, and w2 and w3 are the frequencies of spatial oscillations; 
on this basis, analysis of the amplitude of yawing oscillations enabled a rational distribution to be made 
of additional loads along the Oxi and Ox2 axes, provided the structural constraints on the total mass 
of the loads were observed. In the final design, eighteen rods were installed on the satellite, with a total 
volume of 0.25 cm3. After the additional loads had been installed, the rincipal central moments of 
inertia of the satellite were A = 1.633, B = 1.795 and C = P 0.256 kg m . The initial condition which 
exerted the greatest influence on the duration of the transient was the angular velocity. The initial values 
of the components of the angular velocity of the satellite were estimated at approximately 3” per second. 
The transient lasted approximately 1 month. The angles ok (k = 1,2,3) between similarly designated 
axes of the orbital and satellite frames of reference, as functions of the argument of the latitude u, 
describe the almost steady motion of the satellite during that time. The effect of the Earth’s diurnal 
rotation on the motion of the satellite was quite marked. The geomagnetic field was approximated by 
the field of a dipole situated at the centre of the Earth, at an angle of 11.5” to its axis of rotation. In 
accordance with the results of available estimates, the aerodynamics and light pressure effects were 
ignored. The period of slow evolutionary changes in the motion characteristics was close to one day - 
the period of oscillations of the geomagnetic dipole with respect to the orbital plane. The major influence 

tOVCHINNIKOV M. Yu., PEN’KOV V. I. and MIRER, S. A. Passive gravitational attitude control system of the REFLECTOR 
nanosatellite. Preprint No. 30 M. V Keldysh, Inst. P&I. Mat. Ross. Akad. Nauk Moscow, 1999. 
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turned out to be on the yawing motion of the satellite. The angle 0s between the longitudinal axis and 
the local vertical varied insignificantly over a period of 24 hours. 

Based on the results of a numerical simulation, it should be made that for rods which actually move 
within the orbital plane after the transient is completed, the magnetization loop is almost parallelogram- 
shaped, while for rods almost perpendicular to the orbital plane the magnetic reversal regime is close 
to that described by the Rayleigh model. 

3. MAGNETIC ATTITUDE CONTROL SYSTEMS 

The precessional motion of a satellite with a permanent magnet has been considered in the context of 
the averaged direct dipole model. According to this model, the geomagnetic field intensity vector does 
not change in magnitude and moves uniformly over a conical surface in a translating frame of reference 
with origin at the satellite’s centre of mass. The dynamics of the first satellite with a passive magnetic 
attitude control system. Transit-lB, was described in [13]. The now classical equation of motion for a 
satellite with a permanent magnet in the plane of a polar orbit about the vector H, first published by 
Beletskii [4], is 

a”+q 7 1+3sm usina= 
6sin 2u 

(1+3sin*U)* (3-l) 

where q is the dimensionless magnetic parameter of the satellite, which is proportional to the magnitude 
of the magnetic restoring torque mJ& and inversely proportional to the quantity Boi. 

Using this equation as an example, the following factors influencing the satellite’s motion were 
identified. First, the fact that the equation has a non-zero right-hand side implies that exact orientation 
of the satellite along the vector H is impossible. Second, after expanding the right-hand side in a Fourier 
series in harmonics, with frequencies which are multiples of twice the orbital frequency o. of the satellite’s 
centre of mass, one becomes aware of the presence of natural frequencies of small oscillations of the 
satellite about the vector H, and if these are identical with the frequencies of the harmonics in the Fourier 
series, resonance may occur. Third, the coefficient of sinrx is a periodic function of time, which gives 
rise to variation of the amplitude curve, which is slow compared with the period of natural oscillations 
of a satellite with a sufficiently strong magnet, over the period of revolution of the satellite in orbit 
about the Earth. Finally, because of the periodic dependence of this coefficient, parametric resonance 
may occur in the relative motion of the satellite. 

Equation (3.1) was investigated fairly thoroughly by the method of harmonic balance in publications 
by Beletskii and Khentov, and it was generalized in the monograph [7]. In particular, several first 
resonance values of the parameter q have been found. 

If a passive magnetic attitude control system is to be developed for a specific satellite, it is naturally 
necessary to investigate its dynamics in detail. Equations of motion have been derived for a satellite 
with a magnet, assuming the direct dipole model to approximate the geomagnetic field.? The assumption 
that the satellite is axisymmetric made it possible to reduce the order of the system of equations to 
four. Consideration of a particular solution of the equations -motion of the satellite’s axes of symmetry 
in the plane of a polar orbit - and use of the Sturm-Liouville theorem, for a sufficiently strong magnet, 
yielded asymptotic formulae for the points of bifurcation of periodic solutions. Periodic solutions are 
indeed those obtained as computed motions of the satellite. 

As indicated previously, one source of bifurcation of solutions is resonance between the natural 
frequencies of the satellite and the frequencies of perturbations arising from non-uniform rotation of 
the vector H due to the satellite’s orbital motion. Motions bifurcate in the orbital plane, splitting off 
three-dimensional motions. The latter become valid three-dimensional motions if the satellite is spinning 
about an axis and the orbit is symmetric or non-polar. Formulae of identical form define the bifurcation 
values of the parameter q for bifurcation points of both types: 

n=p,k2+p*+O(I/k) (3.2) 

where k is the order number of the bifurcation points andpi andp2 are certain constants, different but 
constant for each type of bifurcation. For orbits of arbitrary inclination, a formula structurally analogous 

tSARYCHEV, V. A., SAZONOV, V V. and OVCHINNIKOV, M. Yu., Periodic oscillations of a satellite about the centre of 
mass under the action of a magnetic torque. Preprint No. 182. M. V. Keldysh Inst. Prild. Mat., Akad. Nauk SSSR. Moscow, 1982. 
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to (3.2) has been obtained, withpr andpz dependent on the inclination of the orbit [14]. Figure 1 presents 
numerically computed bifurcation curves for symmetric solutions in the (q, i) plane. The solid curves 
correspond to small-amplitude solutions. The dashed curves represent bifurcation curves of solutions 
with fairly large amplitudes. The bifurcation points of plane solutions and points at which three- 
dimensional solutions branch off are denoted by PI, RI and Q2, respectively. Results of a detailed 
investigation of the periodic solutions of satellite with a permanent magnet are presented in [15]. The 
main results of the investigations are: the determination of the values of the magnetic parameter of 
the satellite which are “dangerous” from the standpoint of increasing amplitude of oscillations about 
the vector H, estimates of the amplitude of oscillations as a function of the values of the magnetic 
parameter and the inclination of the orbit and an analysis of the necessary conditions for these oscillations 
to be stable. 

The next step is the choice of the parameters and of the number and position of hysteresis rods in 
the body of the satellite. For plane motion in the context of the parallelogram model, a way to obtain 
estimating characteristics of the transient has been indicated [8]. Mention should be made of [16], in 
which a general expression was obtained for the amplitude of the oscillations of the satellite in the plane 
of a polar orbit for fairly general assumptions concerning the shape of the hysteresis loop. To study the 
evolution of the three-dimensional motions of a satellite with rods in an orbit of arbitrary inclination, 
an analysis of such motions was necessary. This was first done using asymptotic techniques, on the 
assumption that the influence of the rods while the satellite is orbiting was insignificant and that the 
angle 8 by which the axis of symmetry of the satellite deviated from the vector H was small, in the context 
of the Rayleigh model [17]. The following expression was obtained for the angle 8 

El(u) = Wo) 
(I +3sin2 isin u)% ex 

--$Ej(l+3sin2isin2u)%du 
UO 

P-3) 

‘h 

(in the Rayleigh model the area S,, of the hysteresis loop is expressed in terms of the Rayleigh constant 
oR and the amplitude H, of the magnetic reversal field). For small H,, the quantity I+ remains constant. 
One can therefore determine & from experimental data and compute oR. Having experimental data 
on the loops, one can obtain a qualitative description of the transient using the previous formulae. 
Incidentally, the last formula shows that the coefficient E is inversely proportional to the modulus m, 
of the dipole moment of the permanent magnet. 

The next step was as numerical investigation of the transient and steady motions of the satellite. We 
will consider this using the example of the MUNIN nanosatellite [18], which is equipped with a 
permanent magnet and a number of hysteresis rods. Based on results obtained by analysing the periodic 
solutions of the satellite, the dipole moment m, of the permanent magnet was taken to be equal to 
0.3 A m2. The total volume of the six rods, each of length 15.5 cm, was about 1 cm3. An example of the 
steady motion, represented by the angle 8 as a function of the argument of latitude, in two loops around 
the Earth, is shown in Fig. 2, which was obtained using the IGRF-95 model of the geomagnetic field 
and the refined hysteresis model. Figure 3 shows the magnetization of the rods along an axis perpendi- 
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cular to the orientation axis, divided by the saturation induction, which is equal to 0.74 T, plotted as a 
function of the magnitude of the projections of the geomagnetic field intensity vector onto the rods, 
for the duration of one revolution of the satellite in its orbit. The partial loops correspond to the magnetic 
reversal of a rod in forced oscillations at frequencies close to the natural frequency. 
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